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SYNTHESIS OF TRIANTENNARY BLOOD GROUP I ANTIGENS: NEOLACTO-
GLYCOPENTADECAOSYL CERAMIDE!
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Abstract: A stercocontrolled total synthesls of triantennary neolacto- -glycopentadecaosyl
ceramide was achieved for the first time.

Branched poly-N-acetyl-lactosamine type structures that are expressed on the cell surface
of embryonic and transformed cells have significant biological functions in terms of cell-cell
recognition and differentiation2,  Synthetic studies on the poly-N-acetyl-lactosamine type
glycosyl ceramides have so far .been focussed mainly for linear3 and biantennary* neolacto
series. Interested by the isolation and characterization of triantennary poly-N-acetyl-
lactosamine type glycosyl ceramide 2 from rabbit erythrocyte membranesS as well as of other
related structures from human placentad, we have studied a reasonable synthetic approach
toward the triantennary structures 1 and 2. The retrosynthetic analysis shown in scheme 1 led
us to design a glycosyl donor 3 and a ceramide derivative 4. The former may be further
disconnected into glycosyl donmors 5 and 64 (or 7), and a glycohexaosyl acceptor 8. The key
intermediate 8 may be reconstructed from glycosyl donor 9 and glycotetraosyl acceptor 10.
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The glycohexaosyl acceptor 8 was synthesized as follows. The known compounds 114 was
converted in two steps into fluoride 137 via 127 (1 CANS in 4:3:2 CH3CN-toluene-H20, 2 DAST? in
(CICH32)2, 89% overall). Sclective protection of diol 144 wag carricd out by treatment with LevOH,
2-chloro-1-methylpyridinium iodide (CMPI) and DABCO10 in (CICH3)2 for 40 min at 25° to give
nearly quantitative yield of 107. Glycosylation of 10 with 13 in the presence of CpaHfCla!l,
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AgOTf and powdered molecular siecve 4A (MS4A) in (CICH2); for 3.5h at -23° afforded 96% of 157.
Three levuloyl groups in 15 was easily removed by NH2NH2+AcOH in 3:1 EtOH-THF to give 94% of
the designed key intermediate triol 87.
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Having prepared compound 8, synthesis of glycododecaosyl ceramide 1 was first studied.
Cp2Hf(OTf)2 promoted!! coupling of 8 with 2.7 equivalents of 5 that was readily available from
corresponding hemiacetall2 by treatment with DAST afforded 92% of glycododecaoside 167.
Conversion of 16 into trichloroacetimidate 17 was achieved in 4 steps (/ 10% Pd(OH)2-C and Hj in
16:1 MeOH-EtOAc, 2 Ac20 and DMAP in Py at 45° for 18h, 3 NHaNH2-AcOH!3 in DMF at 50° for
25min, 4 CCI3CN14, DBU in (CICH2)2 at -5° for 1h, 56% overall). TMSOTS promoted coupling of 17
with ceramide derivative 415 in CHCl3 at -23° afforded 45% of 18 which was further converted
into 1 in 3 steps (/ 40% MeNH216 in McOH, 2 Acy0 and DMAP in Py, 3 NaOMe in 7:4 McOH-THF, 54%

overall).
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In studying the synthesis of 2 the known glycosyl donor 6 readily obtainable* from 19 was
first employed. Cp2Hf(OTf)2 promoted glycosylation of 8 with 2.7 equivalents of 6 in (CICH3)2 at
-23° afforded 90% of desired compound 21 which, however, could be converted into 23 only with
difficulty mainly due to the sluggish hydrogenolytic removal of 33 benzyl groups in 21. In
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order to decreasec the number of benzyl groups in the pentadecaoside 21 we designed a
completely acylated donor 7. Compound 194 was converted into 77 via 207 in 4 steps (! 10% Pd-C
and Ha in 10:5:1 MeOH-EtOAc-H20, 2 Ac20 and DMAP in Py, 3 CAN in 50:38:25 CH3CN-toluene-H20, 4
DAST in (CICH2)2, 79% overall). With 2.1 equivalénts of the glycotriosyl donor 7 CpaHf(OTf)2
promoted glycosylation of 8 in (CICH2)2 at -23° gave 71% of 22, which was to our delight
smoothly converted into 23 in two steps (/ 10% Pd-C and Hy in 16:1 MeOH-EtOAc, 2 Ac20 and DMAP
in Py, 60% overall). Conversion of 23 into 25 in 19% overall yicld was carried out in 3 steps via
trichloracetimidate 24 as described for 18. Finally, conversion of 25 into the target molecule 2
was executed in 3 steps as described for 1(/ 40% MeNH2 in MeOH for 3 days at 25°, 2 Ac20 and
DMAP in Py for 23h at 58°, 3 NaOMe in 7:4 MeOH-THF, 41% overall). The !H-nmr data for
synthetic 1 and 2 were in good agreement with those for natural samplesS, thus confirming the
assigned structure for both 1 and 2.
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In summary, by employing a key glycohexaosyl acceptor 8 and acetylated glycosy! donors §
and 7, a versatile synthetic route to triantennary poly-N-acctyl-lactdsaminc type neolacto-
glycosyl ceramide 1 and 2 was developed.
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