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Abstract: A stcrcocontrollcd total synthesis of thantennary neolocro-glycopentadecaosyl 
ceramide was achieved for the first time. 

Branched poly-N-acctyl-lactosamine type structures that are expressed on the cell surface 

of embryonic and transformed cells have significant biological functions in terms of cell-cell 

recognition and differentiation2. Synthetic studies on the poly-N-acetyl-lactosamine type 

glycosyl ceramides have so far .been focussed mainly for linear2 and biantennary4 ncolacto 

series. Interested by the isolation and characterization of triantennary poly-N-acetyl- 

lactosamine type glycosyl ceramide 2 from rabbit erythrocyte membranes5 as well as of other 

related structures from human placenta6, we have studied a reasonable synthetic approach 

toward the triantennaty structures 1 and 2. The retrosynthetic analysis shown in scheme 1 led 

us to design a glycosyl donor 3 and a ceramide derivative 4. The former may be further 

disconnected into glycosyl donors 5 and 64 (or 7). and a glycohexaosyl acceptor 8. The key 

intermediate 8 may be reconstructed from glycosyl donor 9 and glycotetraosyl acceptor 10. 
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The glycohexaosyl acceptor 8 was synthesixed as follows. The known compounds 114 was 

converted in two steps into !luoride 137 via 127 (I CAN* in 4:3:2 CH2CN-toluene-H20, 2 DA!@ ‘in 

(ClCH2)2. 89% overall). Selective. protection of diol 144 was carried out by tnatment with LevOH, 

2-chloro-I-methylpyridinium iodide (CMPI) and DABCOlu in (CICH2)2 for 40 min at 25’ to give 

nearly quantitative yield of 107. Glycosylation of 10 with 13 in the presence of Cp2HfC1211, 
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AgOTf and powdered molecular sieve 4A (MS4A) in (ClCH2)2 for 3.5h at -23O afforded 96% of 157. 

Three levuloyl groups in 15 was easily removed by NH2NH2eAcOH in 3:l EtOH-THP to give 94% of 

the designed key intermediate trio1 87. 

Having prepared compound 8. synthesis of glycododecaosyl ceramide 1 was first studied. 

Cp2Hf(OTf)2 promoted* 1 coupling of 8 with 2.7 equivalents of 5 that was readily available from 

corresponding hemiacetallg by treatment with DAST afforded 92% of glycododecaoside 167. 

Conversion of 16 into trichloroacetimidate 17 was achieved in 4 steps (I 10% Pd(OH)2-C and H2 in 

16:l MeOH-EtOAc, 2 Ac20 and DMAP in Py at 45’ for 18h. 3 NH2NH2eAcOH13 in DMP at 50“ for 

25min. 4 CC13CN14, DBU in (C!lCH2)2 at -5’ for lh. 56% overall). TMSOTf promoted coupling of 17 

with ceramide derivative 4’5 in CHC13 at -23’ afforded 45% of 18 which was further converted 

into 1 in 3 steps (1 40% MeNH216 in McOH, 2 Ac20 and DMAP in Py, 3 NaOMe in 7:4 MeOH-THP. 54% 

overall). 

Schomo 3 
la 

In studying the synthesis of 2 the known glyeosyl donor 6 readily obtainable4 from 19 was 

tlrst employed. Cp2Hf(OTf)2 promoted glycosylation of 8 with 2.7 equivalents of 6 in (ClCH2)g at 

-23O afforded 90% of desired compound 21 which, however, could be converted into 23 only with 

difficulty mainly due to the sluggish hydrogenolytic removal of 33 benzyl groups in 21. In 
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order to decrease the number of benzyl groups in the pentadecaoside 21 we designed a 

completely acylated donor 7. Compound 194 was converted into 77 via 207 in 4 steps (I 10% W-C 

and H2 in 10:5:1 MeOH-EtOAc-H20.2 AC20 and DMAP in Py. 3 CAN in 50:38:25 CH3CN-toluene-H20.4 

DAST in (ClCH2)2. 79% overall). With 2.1 equivalents of the 8lycotriosyl donor 7 Cp2Hf(OTf)2 

promoted glycosylation of 8 in (CICH2)2 at -23’ gave 71% of 22. which was to our delight 

smoothly converted into 23 in two steps (I 10% W-C and H2 in 16:l MeOH-EtOAc, 2 AC20 and DMAP 

in Py. 60% overall). Conversion of 23 into 25 in 19% overall yield was can-led out in 3 steps via 

trichloracetimidate 24 as described for 18. Finally, conversion of 25 into the target molecule 2 

was executed in 3 steps as described for l(Z 40% MeNH2 in MeOH. for 3 days at 25’. 2 Ac20 and 

DMAP in Py for 23h at 58O. 3 NaOMe in 7:4 MeOH-THF. 41% overall). The tH-nmr data for 

synthetic 1 and 2 were in good agreement with those for natural samplesg. thus confirming 

assigned structure for both 1 and 2. 

the 

In summary, by employing a key glycohexaosyl acceptor 8 and acetylated glycosyl donors 5 

and 7, a versatile synthetic route to triantennary poly-N-acetyl-lactosamine type ncolacto- 

glycosyl ceramide 1 and 2 was developed. 
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